
Lab Report #1

CASSARD Sebastien 19960526-T313

November 11, 2018

NOTE : For the following results, the program is run for an array size of 500 000 000
elements.

1 Task 1: Using Pthreads

1.1 Speedup for the Pthreads program

1.1.1 Result when calculating the sum 5 times

Number of threads Serial Pthreads Speed up
1 11.628s 11.956s 0.97
2 11.628s 7.213s 1.61
4 11.628s 6.046s 1.92
8 11.628s 6.028s 1.93

1

The table above shows the different execution times of the program as well as the speedup
for each number of threads. With the help of Amdahl’s law it is possible to determine
approximately which percentage of the program is serial and which percentage is parallel.

Amdahl’s law tells us that:

Speedup =
1

(1 − F) + F
S

Where F is the fraction of the programme that is enhanced by a factor S. Here S correspond
to the number of threads. So knowing S and Speedup we can deduce 1 − F and F which
are respectively the percentage of the program which run in serial and the percentage which
runs in parallel.

From the above formula, the following equality can be deduced:

F =
S(1

Speedup
− 1)

1 − S

Which gives us the following results :

Number of threads F 1-F
2 0.76 0.24
4 0.64 0.36
8 0.55 0.45

1.1.2 Result when calculating the sum 20 times

Number of threads Serial Pthreads Speed up
1 38.247s 38.245s 1.00
2 38.247s 20.525s 1.86
4 38.247s 15.874s 2.41
8 38.247s 15.819s 2.42

2

As in the previous section, the percentages of the serial (1 − F) and parallel (F) fractions
are deducted:

Number of threads F 1-F
2 0.92 0.08
4 0.78 0.12
8 0.67 0.23

1.2 Conclusions

In the two cases studied above, we notice an improvement in execution time with the increase
in the number of threads. However, several elements need to be put into perspective.

Firstly, we notice that the speedup stagnates for more than 4 threads. This can be
explained by the fact that the measurements were made on an Intel Core i3-6100U cpu
which has only 4 cores.

Secondly, we can see that the higher the number of threads is, the higher the serial code
fraction is. This is probably due to the overhead caused by the creation of the different
threads.

Despite these elements, we can observe much better results with a higher number of
threads.

3

2 Task 2: Using OpenMP

2.1 Speedup for the OpenMP program

Number of threads Serial OpenMP Speed up
1 11.628s 10.474s 1.11
2 11.628s 7.405s 1.57
4 11.628s 6.787s 1.71
8 11.628s 6.096s 1.91

4

2.2 Comparing OpenMP and Pthreads

Number of threads Pthreads Speed up OpenMP Speed up
1 1.00 1.14
2 1.86 2.10
4 2.41 2.39
8 2.42 2.36

We can see that the results obtained with OpenMP and Pthreads are very similar. How-
ever, OpenMP only requires one line of code where Pthreads requires about ten. In the case
of a loop to be parallelized, the use of OpenMP will be preferred. However, if we need to
start a separate process which shouldn’t block the main thread, then maybe Pthreads would
be a better choice as it allows us to have you have extremely fine-grained control over thread
management.

5

