
Lab Report #2

CASSARD Sebastien 19960526-T313

November 11, 2018

NOTE : For the following results, the program is run for an array size of 100 000 000
elements, summed 5 times. Moreover, the processor used for this TP only has 4 cores, so we
will only test for a maximum number of threads equal to 4.

1 Part A:

1.1 OpenMP vs Pthreads

Nb of threads Execution time Nb of instructions
Serial 1 2,32s 6 585 596 212

Pthreads
2 1,43s 6 591 510 482
4 1,18s 6 588 130 565

OpenMP
2 1,46s 8 091 644 996
4 1,36s 8 096 455 632

As observed in the previous lab, the execution time using OpenMP or Pthreads is significantly
better than that of the serial program. However, we notice that OpenMP is slightly slower
than Pthreads, which can be explained by a larger number of instructions for OpenMP.

Nb of threads L1 data cache loads L1 data cache loads misses
Serial 1 4 227 718 060 77 604 419

Pthreads
2 4 229 583 074 77 492 397
4 4 228 680 613 77 825 815

OpenMP
2 5 228 893 077 77 634 564
4 5 229 441 053 74 131 057

The number of L1 data cache loads are almost identical regardless of the program used.

Nb of threads Last level cache loads Last level cache loads misses
Serial 1 417 765 204 371

Pthreads
2 509 702 254 084
4 523 455 267 960

OpenMP
2 669 443 229 412
4 472 027 223 814

1



Similarly, last level cache misses are very similar regardless of the program considered. More
particularly, we notice that the number of cache misses is slightly higher during parallel
executions.

1.2 Importance of loop order

The same measurements as in the previous section were made on modified versions of pro-
grams in which the inner and outer loops of the sum array function were swapped.

Nb of threads Execution time Nb of instructions
Serial 1 1,76s 7 486 298 854

Pthreads
2 1,14s 7 489 825 076
4 1,18s 7 488 834 876

OpenMP
2 6,35s 11 979 911 869
4 7,80s 10 680 977 720

nb of threads L1 data cache loads L1 data cache loads misses
Serial 1 4 727 762 314 27 424 890

Pthreads
2 4 728 983 579 27 168 413
4 4 728 660 561 27 331 033

OpenMP
2 7 292 566 075 206 406 395
4 6 466 020 445 268 210 984

Nb of threads Last level cache loads Last level cache loads misses
Serial 1 497 846 161 327

Pthreads
2 525 978 173 498
4 617 231 183 161

OpenMP
2 533 410 163 163
4 638 162 173 234

The inversion of the loops in the sum array function allows better overall performance.
We observe a better runtime, as well as much less cache misses, both for L1 cache misses
and last level cache misses. By reversing the order of the loops, we take advantage of the
principle of locality. The consecutively accessed values are on the same cache line, drastically
reducing the number of misses.

However, it is noted that OpenMP has lower performances in this configuration. This is
probably due to a bad implementation of pragma commands on my part.

2



2 Part B:

Padding disabled Padding enabled
Nb of threads nb of inst L1 data cache misses nb of inst L1 data cache misses

1 7504956173 79603 8505204732 83776
2 15011202705 92859638 17007138438 166253
4 30047905704 265941494 34014299882 227491

Activating the padding significantly reduces the number of cache misses. Even if the number
of instructions with padding is higher, this element is largely compensated by the low number
of cache miss.

Nb of threads 32 bytes padding 64 bytes padding
1 75271 83776
2 95678028 166253
4 253685427 227491

The number of cache misses for a padding of 32 bytes gives almost the same results as the
program without padding. Indeed, 64 bytes being the size of a cache line, a padding of 64
bytes allows to exploit the locality cache phenomenon (as the variables are no longer all on
the same cache line, we have less false sharing miss).

3


