
Lab Report #3

CASSARD Sebastien 19960526-T313

November 11, 2018

1 Raw results:

1.1 Mutex lock

Nb of threads Runtime Nb of instructions L1 data cache accesses L1 dcache misses
1 1,62s 6 045 620 819 1 721 553 805 199 762
2 5,35s 13 222 059 660 3 564 390 543 56 876 518
4 4,94s 13 769 662 620 3 727 566 446 85 726 698

1.2 Basic CAS lock

This lock is implemented using a Compare and Swap atomic instruction. The latter is used
when acquiring the lock, but not when releasing the lock (in our program, when the unlock
release function is called, the lock value is necessarily 1).

Nb of threads Runtime Nb of instructions L1 data cache accesses L1 dcache misses
1 0,69s 1 330 547 211 442 945 574 370 153
2 3,21s 2 166 260 302 652 544 211 74 814 537
4 6,20s 4 497 775 771 1 245 982 490 136 007 213

Compared to the previous lock, the basic CAS lock seems more efficient for a small number of
threads. For a large number of threads, the performance of the CAS lock is worse, especially
because the threads are constantly trying to acquire the lock until they get it.

1.3 Optimized CAS lock with yield

As we have seen before, the weak point of the basic CAS lock is that threads constantly try
to access the lock until they have it. Here we will consider an improved version of this lock,
in which if a thread fails to acquire a lock, it yields the processor. This version offers better
performance than the basic CAS lock for a large number of threads.

1

Nb of threads Runtime Nb of instructions L1 data cache accesses L1 dcache misses
1 0,67s 1 324 317 917 441 150 548 106 993
2 0,81s 2 358 698 096 779 336 794 6 130 807
4 0,86s 3 116 518 079 1 003 780 514 5 105 680

1.4 Test and test and set

This last implementation is a test and test and set lock. Its objective is to reduce the number
of atomic operations compared to previous implementations. Its procedure is simple, we try
to acquire the lock with a CAS, if we do not succeed we check the value of the lock until it
changes, then we retry to acquire the lock with a CAS.

Nb of threads Runtime Nb of instructions L1 data cache accesses L1 dcache misses
1 0,65s 1 324 624 108 441 242 454 121 550
2 3,77s 4 981 871 508 1 365 046 754 116 194 182
4 3,16s 9 814 681 971 2 568 246 674 84 994 492

2 Comparison

2.1 Runtimes

Concerning the runtime, it seems that the yield CAS outperforms all other implementations.
We can see that the basic CAS gives weak results on a high number of threads, while the
T&T&S seems to have better performance for a high number of threads.

2

2.2 Number of instructions

The number of instructions of the two versions of the CAS lock are quite similar for 1 and 2
threads, but for 4 threads, it is the yield CAS that has the lowest number of instructions.

2.3 L1 data cache accesses

3

In terms of data cache accesses, yield CAS seems more interesting than the others.

2.4 L1 dcache misses

According to the results, the yield CAS seems to outperform all the others in terms of cache
misses. However, these values are so surprising that it could most likely be a measurement
error. Indeed, given the previous measures, one would rather expect similar results between
the basic CAS and the yield CAS. As for the T&T&S, we always notice that its performance
improves with the increase in the number of threads.

2.5 Conclusions

After studying the results of the different implemented locks, we notice that for a small
number of threads (in this case 1 or 2) the basic CAS lock and yield CAS lock have the
best results. In return, for a larger number of threads (here 4), the basic CAS lock is not
really viable, and we will rather choose the yield CAS lock which seems to present very
good results. As for the T&T&S lock, we would have expected it to perform better for a
large number of threads. Here the T&T&S lock results do not give great results. Maybe for
an even higher number of locks we would see much better performance compared to other
locks.

4

