
Stochastic optimization algorithms 2018

Home problems, set 1

General instructions. READ CAREFULLY!

Problem set 1 consists of three parts. Problems 1.1 and 1.3 are mandatory, Problem 1.2 is
voluntary (but check the requirements for the various grades on the web page). After solving
the problems, collect your answers, your programs, and your report (see below) in one .zip file
which, when opened, generates one main folder containing your report and additional subfold-
ers for each problem (e.g. Problems 1.1 and 1.3) in the assignment. In problems that do not
involve computer programming (e.g. Problem 1.2, in this case), no folder is needed.

You should provide a single report (for Problems 1.1-1.3, i.e. the whole set) in the form of a
PDF file (Note: Only this format is accepted). In the case of analytical problems, make sure to
include all the relevant steps of the calculation in your report, so that the calculations can be
followed. Providing only the answer is not sufficient. Whenever possible, use symbolical calcu-
lations as far as possible, and introduce numerical values only when needed. You should write
the report on a computer, preferably using LaTeX (see www.miktex.org). Scanned, handwrit-
ten pages are not allowed.

In all problems requiring programming, use Matlab. The complete Matlab program for the
problem in question (i.e. all source files) must be handed in, collected in the folder(s) for the
problem in question. In addition, clear instructions concerning how to run the programs should
be given in the report. The information should, for example, specify which file is the main
script for the problem in question. Do not include unnecessary (unused) Matlab files. It should
not be necessary to edit the programs, move files etc. Programs that do not function or require
editing to function will result in a deduction of points. Furthermore, when writing Matlab
programs, you should make sure to follow the coding standard (available on the web page).
You may, however, hardcode parameters (in your .m-files) (see, for example, the parameters
hardcoded in the beginning of FunctionOptimization.m in the Matlab introduction).

The maximum number of points for problem set 1 is 10. Incorrect problems will be re-
turned for correction only in cases where the mandatory requirements have not been met,
so please make sure to check your solutions and programs carefully before e-mailing them to
mattias.wahde@chalmers.se.

You may, of course, discuss the problems with other students. However, each student must

hand in his or her own solution. Note that a plagiarism check will be carried out, in which
both your report and your code are checked against reports and code from other students (both
from this year and earlier years). In obvious cases of plagiarism, points will be deducted from
all students involved.

NOTE: Don’t forget to write your name and civic registration number on the front page of the
report! Make sure to keep copies of the files that you hand in! Good luck!

(Strict) deadline: 20180925, 23.59.59

Problem 1.1, 3p, Penalty method (Mandatory)

In this problem, we shall use the penalty method (see pp. 30-33 in the course book) to find the
minimum of the function

f(x1, x2) = (x1 − 1)2 + 2(x2 − 2)2, (1)

subject to the constraint
g(x1, x2) = x2

1 + x2
2 − 1 ≤ 0. (2)

1. Define (and specify clearly, in your report, as a function of x1, x2, and µ) the function
fp(x;µ), consisting of the sum of f(x1, x2) and the penalty term.

2. Next, compute (analytically) the gradient ∇fp(x;µ), and include it in your report.

3. Find and report the unconstrained minimum (i.e. for µ = 0) of the function. This point
will be used as the starting point for gradient descent.

4. Write a Matlab program for solving the unconstrained problem of finding the minimum
of fp(x;µ) using the method of gradient descent. Specifically, your program must contain

(a) A main file PenaltyMethod.m (that calls the other functions, generates and prints
output etc. etc.). This program should not require any input, i.e. to run it, one should
only need to write PenaltyMethod in Matlab, without having to specify any input
parameters. The necessary parameters may be hardcoded in PenaltyMethod.m; see
also below.

(b) A function (in a separate file, GradientDescent.m), which takes the starting point
x0 (as a vector with two elements), the value of µ, the step length (for gradient
descent) η, and a threshold T (see below) as input, and carries out gradient descent
until the modulus of the gradient, |∇fp(x;µ)|, drops below the threshold T . Use the
unconstrained minimum at the starting point; see above.

(c) A function Gradient (in a separate file, Gradient.m) which takes as input the values
of x1, x2, and µ, and returns the gradient of fp(x;µ) (a vector with two elements).
Note: You may hardcode the gradient in this method, i.e. you do not need to write a
general method for finding the gradient. However, your method should make use of
the analytical gradient, computed in Step 2 above. You should not use a numerical
approximation of the gradient.

5. Run the program for a suitable sequence of µ values (which you may hard-code in
PenaltyMethod.m). Select a suitable (small) value for the step length η, and specify
it clearly, along with the sequence of µ values, in your report. Example of suitable pa-
rameter values: η = 0.0001, T = 10−6, sequence of µ values: 1, 10, 100, 1000.

The output from the program should be a table with three columns, namely µ, x∗

1, and x∗

2.
This table should be printed as output by the program and you should also include a table
with the same information in your report. Specify the values of x∗

1 and x∗

2 with 3 decimals. Do
not just print the raw Matlab output (with many decimals, for example) in your report! You
should also check that your results are reasonable, i.e. that the sequence of points appears to
be convergent.

Maximum number of points for this problem: 3p.
Maximum number of points if the problem must be returned for correction: 1p

S

(1,1)(0,1)

(0,0)

Figure 1: The set S used in Problem 1.2a.

Problem 1.2, 3p, Constrained optimization (Voluntary)

a) (2p) Use the analytical method described on pp. 29-30 in the course book to determine
the global minimum (x∗

1, x
∗

2)
T (as well as the corresponding function value) of the function

f(x1, x2) = 4x2
1 − x1x2 + 4x2

2 − 6x2, (3)

on the (closed) set S, shown in the figure. The corners of the triangle are located at (0, 0), (0, 1)
and (1, 1).

b) (1p) Use the Lagrange multiplier method described on pp. 25-28 in the course book to
determine the minimum (x∗

1, x
∗

2)
T (as well as the corresponding function value) of the function

f(x1, x2) = 15 + 2x1 + 3x2 subject to the constraint h(x1, x2) = x2
1 + x1x2 + x2

2 − 21 = 0.

Problem 1.3, 4p, Basic GA program (Mandatory)

a) Write a standard genetic algorithm (GA) using (some of) the components described in
Sect. 3.2.1 of the course book. You may start from the Matlab program written during the
Matlab introduction, but note that the program needed for this problem is a bit different! In
addition to writing the main program (FunctionOptimization.m), your task is to write Matlab
functions (placed in separate M-files) for

1. initializing a population (InitializePopulation),

2. decoding a (binary) chromosome (DecodeChromosome),

3. evaluating an individual (EvaluateIndividual),

4. selecting individuals with tournament selection (TournamentSelect),

5. carrying out crossover (Cross),

6. carrying out mutations (Mutate).

7. carrying out elitism (InsertBestIndividual)

A version of each of these functions (except the one handling elitism, see below) has been
implemented during the Matlab introduction. However, for this problem you will make (some
of) the functions more general.

Matlab functions

In addition to the main program (called FunctionOptimization.m) you should write the func-
tions specified below. Make sure to implement the functions exactly as described:

InitializePopulation: This function should take the population size and the number of genes
as input, and should return the entire population as a matrix of binary numbers (i.e. as in the
Matlab introduction).

DecodeChromosome: This function should take as input (i) a (binary) chromosome, (ii) the
number of variables that are to be extracted, and (iii) the variable range. Let m denote the
chromosome length and n the number of variables, and let k = m/n. The first k bits should
be used when forming x1, the next k bits should be used for generating x2 etc. Each variable
should be decoded from the k bits according to Eq. (3.9) in the course book. You may assume
that m and n have been chosen such that k is an integer.

EvaluateIndividual: This function should take the vector of variables (x) as input, and should
return the (note!) fitness value (which does not necessarily equal the function value; see 1.3b
below!).

TournamentSelect: This function should take as input (i) the vector of fitness values (from
the most recently evaluated population) (ii) the tournament selection parameter and (iii) the
tournament size, and should return the index of the selected individual, using tournament se-
lection. Note that the function should also handle cases where the tournament size is different
from 2! See the description near the top of p. 50 in the course book.

Cross: This function should take two chromosomes as input, carry out single-point crossover,
and return a chromosome pair (i.e. as in the Matlab introduction).

Mutate: The Mutate function should take as input (i) a chromosome and (ii) a mutation prob-
ability, and should return a mutated chromosome (i.e. as in the Matlab introduction).

InsertBestIndividual: This function should take as input (i) a population and (ii) the best
individual in the most recently evaluated generation (which should be stored in connection with
the evaluation of the population) and (iii) the number of copies n

c
of the best individual that

are to be inserted (normally one or two). The function should then insert the best individual in
the n

c
first positions in the population (replacing the individuals that have been placed there

during selection, crossover, and mutation), and return the modified population.

After completing any Matlab function, you should preferably carry out a unit test, i.e. writ-
ing a simple wrapper that just provides suitable input to the function in question, and then
make sure that the function generates correct output. (You do not need to hand in any of the
unit tests, though). Also, when writing the Matlab program, make sure to follow the coding
standard (available on the web page). Submitting programs that deviate from the coding stan-
dard may result in a deduction of points.

Next, as a test of your GA, find (and report) the (global) minimum value of the function

g(x1, x2) =
(

1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
)

×
(

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
)

(4)

in the interval x1, x2 ∈ [−10, 10] as well as the location (x∗

1, x
∗

2)
T of the minimum. De-

fine the fitness function f as 1/g(x1, x2). At the end of a run (and only then), your pro-
gram should print the minimum value found, as well as the corresponding variable values.
You may hardcode suitable parameter values (population size, crossover probability etc.) in
FunctionOptimization.m. Note that this program, which you should hand in, along with
all the required Matlab functions (see above) should be able to run directly, i.e. without any
required additional input by the user.

Check carefully that you enter the function g(x1, x2) correctly. Hint: g(2, 1) = 2275.

b) Since the goal of this problem is for you to familiarize yourselves with GAs, you should also
make a parameter search that, in this problem, will concern only the mutation rate (Normally,
one would of course carry out an analysis involving several (or all) parameters). For this
analysis, use the same parameter range as above, set the chromosome length to 50 (i.e. 25
genes per variable), the population size to 100, the crossover probability to 0.8, the tournament
size to 2, and the tournament selection parameter to 0.75. In the elitism step, make a single
copy of the best individual (which should be inserted in the first position of the new population,
as described above).

Then, make 100 runs, each lasting 100 generations (each run will normally only take a few
seconds to complete), for each of the following mutation rates: 0.00, 0.02 (= 1/m), 0.05, and
0.10. Now, since the average is likely to be skewed by a few failed runs where the GA gets

stuck (something that occurs from time to time, for any value of the mutation rate), the median
provides a better estimate of the algorithm’s typical performance. Thus, in your report, include
a table showing the median fitness value obtained for each value of the mutation rate. What
conclusions, if any, can be drawn from this analysis?

For these batch runs, you may wish to write a wrapper program and a version of the GA
program that operates as a function (taking input) rather than a script (with pre-specified
parameters, not taking input). You may certainly do so, but you should not hand in this
modified program. You should only hand in the program described in (a) above, which must
run directly (as a script) without the user having to provide any input.

c) Prove analytically (i.e. without the help of a computer!) that the point (x∗

1, x
∗

2)
T you found

in part b) actually is a stationary point of the function g. (You do not need to prove that it is
a minimum). Make sure to include the relevant intermediate steps in your report, so that the
calculation can be followed from beginning to end.

Maximum number of points for this problem: 4p.
Maximum number of points if the problem must be returned for correction: 2p

