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1 Problem 1.1: Penalty method

1.1 Defining fp(X;µ)

Let’s introduce the penalty function (penalty term) P defined by :

P (X;µ) = µ(
m∑
i=0

max{gi(X), 0}2 +
n∑
i=0

hi(X)2)

Where gi, i = 0...m are inequality constraints and hi, i = 0...n are equality constraints.

For the considered problem, with X = (x1, x2)
T :

P (x1, x2;µ) = µ(max{x21 + x22 − 1, 0}2)

Now we can define fp(x1, x2;µ) :

fp(x1, x2;µ) = f(x1, x2) + P (x1, x2;µ)

= (x1 − 1)2 + 2(x2 − 2)2 + µ(max{x21 + x22 − 1, 0}2)

1.2 Computing ∇fp(x1, x2;µ)

∇fp(x1, x2;µ) =

 ∂fp
∂x1

∂fp
∂x2

 =



(
2(x1 − 1) + 4µ x1(x

2
1 + x22 − 1)

4(x2 − 2) + 4µ x2(x
2
1 + x22 − 1)

)
if (x21 + x22 − 1) > 0

(
2(x1 − 1)

4(x2 − 2)

)
if (x21 + x22 − 1) ≤ 0
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1.3 Unconstrained minimum

To find the unconstrained minimum, we set µ = 0. ∇fp(x1, x2;µ) is now given by :

∇fp(x1, x2) =

 ∂fp
∂x1

∂fp
∂x2

 =

2(x1 − 1)

4(x2 − 2)


The unconstrained minimum can be found by solving ∇fp(x1, x2;µ) = (0, 0)T , which gives

us the unconstrained minimum X∗ = (x1, x2)
T = (1, 2)T .

1.4 Program output

In the table below are given the results obtained by running the Penalty method algorithm
with the following parameters:

• η = 0.0001

• T = 10−6

• µ = [1, 10, 100, 1000]

µ x∗1 x∗2
1 0.434 1.210
10 0.331 0.996
100 0.314 0.955
1000 0.312 0.951

These results seem reasonable. The more µ increases, the more the values seem to converge
towards the same point, approximatly around (0.31, 0.95).
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2 Problem 1.2: Constrained Optimization

2.1 Analytical method

The set S is closed and limited, so it is compact. Thus we can use the analytical method
described in the book p29-30 to solve this problem:

Determine the global minimum (x∗1, x
∗
2)
T of f on the closed set S

f(x1, x2) = 4x21 − x1x2 + 4x22 − 6x2

2.1.1 Finding stationary points in the interior of S

First let’s find the stationary points in the interior of S by solving ∇f(x1, x2) = (0, 0)T :

∇f(x1, x2) =

 ∂f
∂x1

∂f
∂x2

 =

 8x1 − x2

−x1 + 8x2 − 6



∇f(x1, x2) = (0, 0)T ⇔

{
8x1 − x2 = 0

−x1 + 8x2 − 6 = 0

⇔

{
8x1 − x2 = 0

x1 = 8x2 − 6

⇔

{
63x2 − 48 = 0

x1 = 8x2 − 6

⇔

{
x2 = 48

63
= 16

21

x1 = 816
21
− 6 = 2

21

Let P1 the stationary point of f found above :

P1 = (
2

21
,
16

21
)T
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2.1.2 Exploring boundary

Now that we have explored the interior, let’s examine the boundaries of the set S.

(i) : 0 < x1 < 1, x2 = 1 : f(x1, 1) = 4x21 − x1 + 4− 6 = 4x21 − x1 − 2

∂f

∂x1
= 8x1 − 1

The stationary point is given by solving ∂f
∂x1

= 0, and we find : P2 = (1
8
, 1)T

(ii) : 0 < x2 < 1, x1 = 0 : f(0, x2) = 4x22 − 6x2

∂f

∂x2
= 8x2 − 6

The stationary point is given by solving ∂f
∂x2

= 0, and we find : P3 = (0, 3
4
)T

(iii) : x1 = x2 : f(x1, x1) = 7x21 − 6x1

∂f

∂x1
= 14x1 − 6

The stationary point is given by solving ∂f
∂x1

= 0, and we find : P4 = (3
7
, 3
7
)T

2.1.3 Exploring the corners

Now it only remains to check the values in the corners :

P5 = (0, 0)T , P6 = (1, 1)T , P7 = (0, 1)T

2.1.4 Invastigating the points

The 7 values found above are the only ones that can be the overall minimum of f in Set S.
Let’s examine Pi, i ∈ {1...7} successively:

• f(P1) ' −2.28

• f(P2) ' −2.06

• f(P3) ' −2.25

• f(P4) ' −1.28

• f(P5) ' 0

• f(P6) ' 1

• f(P7) ' −2

From these value, f(P1) is the smallest. We can conclude that the global minimum (x∗1, x
∗
2)
T

of f on the closed set S is ( 2
21
, 16
21

)T .
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2.2 Lagrange Multiplier Method

Let’s use the Lagrange Multiplier Method to determine the minimum (x∗1, x
∗
2)
T of :

f(x1, x2) = 15 + 2x1 + 3x2

s.t : h(x1, x2) = x21 + x1x2 + x22 − 21 = 0

First, we need to define L(x1, x2, λ) as followed :

L(x1, x2, λ) = f(x1, x2) + λ h(x1, x2) = 15 + 2x1 + 3x2 + λ(x21 + x1x2 + x22 − 21)

We then have to find the stationary point of L, by solving :

∂L
∂x1

= 0

∂L
∂x2

= 0

∂L
∂λ

= 0

Leading us to solve this system (As λ = 0 is not possible, we will now assume λ 6= 0 ):
2 + λ(2x1 + x2) = 0

3 + λ(2x2 + x1) = 0

x21 + x1x2 + x22 − 21 = 0

⇔


x2 = − 2

λ
− 2x1

x1 = − 3
λ
− 2x2

x21 + x1x2 + x22 − 21 = 0

⇔


x2 = − 2

λ
− 2x1

x1 = − 3
λ

+ 2(− 2
λ
− 2x1)

x21 + x1x2 + x22 − 21 = 0

⇔


x2 = − 4

3λ

x1 = − 1
3λ

(− 1
3λ

)2 + 1
3λ

4
3λ

+ (− 4
3λ

)2 − 21 = 0

⇔


x2 = − 4

3λ

x1 = − 1
3λ

λ ± 1
3

L seems to admit two stationary points P1 = (−1,−4, 1
3
)T and P2 = (1, 4,−1

3
)T . All that

remains is to study these results to find the minimum of f: f(−1,−4) = 1 and f(1, 4) = 29.
We can now say thatthe minimum (x∗1, x

∗
2)
T of is (−1,−4)T .
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3 Basic GA program

3.1 Testing the GA

By running the FunctionOptimization.m script, the GA algorithm finds the minimum of
function g at point (0,−1)−T . This result was obtained with the following parameters :

• populationSize = 30;

• numberOfGenes = 40;

• crossoverProbability = 0.8;

• mutationProbability = 0.025;

• tournamentSelectionParameter = 0.75;

• tournamentSize = 2;

• variableRange = 5.0;

• numberOfGenerations = 100;

3.2 Analysis of the influence of the mutation rate

The data presented in the table below were measured using the FunctionOptimizationMuta-
tionRateMeasure.m script :

Mutation Rate Value Median fitness value
0.0 0.0197
0.02 0.3230
0.05 0.3333
0.1 0.3333

We can notice that the more the mutation rate increases, the higher the fitness median
is. The random mutation of genes is therefore an element that improves the search of the
optimum. However, we can observe that the value of fitness stagnates very quickly from a
mutation rate of 0.05. We can suppose that the mutation phenomenon is effective when it
occurs at low frequencies. It can be assumed that for too high mutation rates, the median
fitness is degraded. For maximum efficiency, very low mutation rates should be preferred.
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