
Stochastic optimization algorithms 2018

Home problems, set 2

General instructions. READ CAREFULLY!

Problem set 2 consists of four parts. Problems 2.1 and 2.2 are mandatory, the others voluntary
(but check the requirements for the various grades on the web page). After solving the prob-
lems, collect your answers, your programs and your report (see below) in one zip file which,
when extracted, makes the report available and also generates one main folder (which may
contain additional subfolders, e.g. 2.1b/, 2.1c/ etc.) for each problem in the assignment.

You should provide a single report (for Problems 2.1-2.4, i.e. the whole set) in the form of a
PDF file (Note: Only this format is accepted). In the case of analytical problems, make sure to
include all the relevant steps of the calculation in your report, so that the calculations can be
followed. Providing only the answer is not sufficient. Whenever possible, use symbolical calcu-
lations as far as possible, and introduce numerical values only when needed. You should write
the report on a computer, preferably using LaTeX (see www.miktex.org). Scanned, handwrit-
ten pages are not allowed.

In all problems requiring programming, use Matlab. The complete Matlab program(s) for the
problem in question (i.e. all source files) must be handed in, collected in the folder(s) for the
problem in question. In addition, clear instructions concerning how to run the programs should
be given in the report. It should not be necessary to edit the programs, move files etc. Pro-
grams that do not function or require editing (or copying files) to function will result in a
deduction of points. Furthermore, when writing Matlab programs, you should make sure to
follow the coding standard (available on the web page). You may, however, hardcode parame-
ters in the main program for each (sub-)problem (see, for example, the parameters hardcoded
in FunctionOptimization.m).

The maximum number of points for problem set 2 is 15. Incorrect solutions will not be re-
turned for correction, except in cases where the mandatory requirements have not been met,
so please make sure to check your solutions and programs carefully before e-mailing them to
mattias.wahde@chalmers.se.

You may, of course, discuss the problems with other students. However, each student must
hand in his or her own solution. Note that a plagiarism check will be carried out, in which
both your report and your code are checked against reports and code from other students (both
from this year and earlier years). In obvious cases of plagiarism, points will be deducted from
all students involved.

NOTE: Don’t forget to write your name and civic registration number on the front page of the
report! Make sure to keep copies of the files that you hand in! Good luck!

(Strict) deadline: 20181017, 23.59.59



Problem 2.1, 5p, The traveling salesman problem (TSP)

The traveling salesman problem (TSP) has many applications in, for example, network routing
and placement of components on circuit boards. In this problem, you will solve the TSP in a
case where the cost function is simply taken as the length of the path.

a) In the TSP, paths that start in different cities but run through the cities in the same order
are equivalent (in the sense that the path length is the same). Furthermore, paths that go
through a given sequence of cities in opposite order are also equivalent. Thus, for example,
in a 5-city case, the paths (1, 2, 3, 4, 5) and (2, 3, 4, 5, 1) are equivalent, as are (1, 2, 3, 4, 5) and
(5, 4, 3, 2, 1). Paths that are not equivalent are called distinct paths. How many distinct paths
are there in the general case of N cities? Show clearly how you arrive at your answer!

b) Write a GA (named GA21b.m) that can search for the shortest path between N cities, using
permutation encoding (see p. 48 in the course book) for the path, i.e. an encoding method such
that the chromosomes consist of lists of integers determining the indices of the cities (Hint: use
the command randperm in Matlab to generate such chromosomes). Examples of five-city paths
starting in city 4 are e.g. (4,3,1,2,5), (4,1,5,2,3), (4,5,1,2,3) etc. Thus, for example, the first of
these chromosomes encodes the path 4 → 3 → 1 → 2 → 5 → 4. The fitness should be taken
as the inverse of the path length (calculated using the ordinary cartesian distance measure,
i.e. not the city-block distance measure). The program should always generate syntactically
correct paths, i.e. paths in which each city is visited once and only once until (NOTE!), in the
final step, the tour ends by a return to the starting city.

While the selection operator can (and should) be used just as in a standard GA, specialized
operators for crossover and mutation are needed in order to ensure that the paths are syn-
tactically correct. However, in this problem, we shall neglect crossover. Mutations should be
implemented as swap mutations that simply swap (the indices of) two cities in a given path.
As usual, introduce a mutation probability pmut and check each gene in the chromosome for
mutation. If a gene is mutated, select another gene randomly, and swap the two alleles (see
p. 147 in the course book). Next, use your program to search for the shortest possible path
between the cities whose coordinates are given in the file

www.me.chalmers.se/~mwahde/courses/soa/2018/LoadCityLocations.m

This file contains a 50×2 matrix with the coordinates (xi, yi) for city i, i = 1, . . . , 50. You should
use the sample code (for plotting paths) available on the web page in the file TSPGraphics.zip.
Whenever a new best path is found (and only for that case), it should be immediately visualized
in the plot window, to keep the user informed about the progress of the program (this applies
also to the other programs; see below). Thus, it is not sufficient just to plot the final path at
the end of a run.

(The problem continues on the next page.)



c) Ant colony optimization (ACO) is especially suitable for solving routing problems of the
kind described above. Following the description in Chapter 4, implement an Ant System (AS)
algorithm (Algorithm 4.1), for solving the same problem as in b).

In this case you should use the Matlab script AntSystem.m (available on the web page)
as the starting point, and you should write the functions that are mentioned in that file (see
the comments that include the words “To do”). The inputs to the functions should be exactly
as specified in AntSystem.m. Note that, except for changing parameter settings and removing
comments (so that the various functions are actually called), you may not modify AntSystem.m.

The most complex function to write is the GeneratePath function, which, taking τij , ηij,
α and β as inputs, should return the path for one ant (i.e. not all the paths at once). It is
a good idea (for clarity) to use at least one additional function in GeneratePath, for example
GetNode that returns the next node in the path, given the tabu list, the pheromone levels (τij),
the visibility matrix (ηij), α, and β as inputs.

Note also that the GetVisibility function should return the matrix ηij , not η
β
ij . Similarly,

the pheromoneLevel matrix should, of course, store τij , not ταij . When updating pheromone
levels, follow the equations in Algorithm 4.1 exactly.

d) As described in Chapter 6 (pp. 147-149), if the GA starts from an initial population
generated completely randomly, it is at a disadvantage compared to ACO, since the latter
easily finds the nearest-neighbour (NN) path. In order to demonstrate the importance of quickly
finding the NN path, as ACO does, write a simple program NNPathLengthCalculator.m that,
after loading the city coordinates, does the following: (1) selects a random starting city; (2)
generates the NN path, starting from that city; (3) computes the length of this path (including
the final step, such that the tour ends at the city of origin). Thus, for this part, all you need to
do is to write (and hand in!) a program that computes the length of the path just mentioned,
and then, in your report, compares its length with the length of the best path from the GA. You
are allowed to use the function for computing the NN path length from (c) (see AntSystem.m).

e) Next, make a long run with each of the two algorithms (GA and ACO) described above.
In your report, plot the shortest path found with each of the two algorithms and specify the
length of each of these paths. Specify also the length of the nearest-neighbour path from part
d). Furthermore, include the shortest path found (i.e. from one of the two algorithms, most
likely ACO!) in a Matlab file named BestResultFound.m containing a vector called bestPath

(with 50 elements, not 51!) with the city indices for the path in question. Note! Do not just
copy from the output window in Matlab! Make sure that the saved vector is directly readable
using Matlab. In particular, BestResultFound.m should not contain any instances of the >

character. Note also that the indices should be in the interval [1, 50], not [0, 49], and that the
path should contain exactly 50 elements (the return to the start city is implied, but the start
city should not be appended at the end of the path). For example, a path may take the form

bestPath = [4 7 1 39 50 41 3 ... etc.

The length of the path will be tested using the vector that you provide, assuming that city
indices have been enumerated from 1 to 50. For full points on the problem, the length of the
best path (obtained with one of your algorithms) should not exceed 123 length units.

Maximum number of points for this problem: 5p.
Maximum number of points if the problem must be returned for correction: 3p



Problem 2.2, 2p, Particle swarm optimization

In this problem, you will implement and use particle swarm optimization (PSO), which is a
stochastic optimization method based on the properties of swarms, such as bird flocks, fish
schools etc.

Start by implementing a standard PSO algorithm (as described in Chapter 5) in Matlab.
Note: The standard PSO algorithm should include the (varying) inertia weight, see p. 128 and
Eq. (5.20) in the course book! Remember to follow the coding standard and to place separate
Matlab functions in separate files. Next, use the contour command in Matlab to determine
the number of minima of the function

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2, (1)

over the range (x, y) ∈ [−5, 5]. Hint: The function varies quite strongly with x and y. In order
to make sure that you identify all the local minima from the contour plot, you may therefore
instead plot the function log(a+ f(x, y)), where a is a small positive constant (e.g. 0.01). You
should include the contour plot, with the minima clearly identified, in your report.

Next, use your PSO (named PSO22.m) to find the exact location of all the local minima (as
well as the corresponding function values) of the function f(x, y). In your report, you should
provide a table with (x, y, f) for the minima. The values of x and y should be given with six
decimal precision.

Since the PSO is stochastic, it will generally find different minima in different runs. Thus,
you will need to run the PSO a number of times (probably more than the number of minima)
in order to find all the minima.

Maximum number of points for this problem: 2p.
Maximum number of points if the problem must be returned for correction: 1p



x

a (>0)

Figure 1: A schematic illustration of a slope. x measures the horizontal distance from the origin, and

α(x) is the instantaneous slope angle at x. Note that α is always positive for a downhill slope.

Problem 2.3, 4p, Optimization of braking systems

In this problem you will develop an intelligent system for braking heavy-duty trucks during
complicated descents (see pp. 83-86 in the course book). Such trucks are equipped with several
braking systems, including the ordinary pedal brakes (also called foundation brakes), engine
brakes, retarder etc. In order for the (foundation) brakes to work properly, the brake discs
must never be overheated. Here, we will use a strongly simplified model of a truck, which will
now be described.

Truck model

The truck is described by the following equations. The acceleration (v̇) is given by

Mv̇ = Fg − Fb − Feb, (2)

where M is the mass of the truck and Fg is the component of the force of gravity in the
instantaneous direction of motion, i.e. Mg sinα, where α(> 0) is the instantaneous downhill
slope angle (see Fig. 1). Fb is the force from the foundation brakes, and Feb the force from the
engine brakes. The braking force Fb is given by

Fb =

{

Mg
20

Pp if Tb < Tmax − 100,
Mg
20

Ppe
−(Tb−(Tmax−100))/100 otherwise

, (3)

where g is the constant of gravity (use SI units!). Pp ∈ [0, 1] denotes the pressure (applied by the
driver) on the brake pedals. The brake temperature ∆Tb (relative to the ambient temperature)
is assumed to vary according to

d∆Tb

dt
=

{

−∆Tb

τ
if Pp < 0.01,

ChPp otherwise
, (4)

where τ and Ch are constants. Note that the temperature in the brakes never can fall below
the ambient temperature Tamb. Thus, the actual brake temperature equals Tb = Tamb +∆Tb.



Furthermore, it is assumed that the truck has 10 gears, and that the force from the engine
brakes Feb is given by

Feb =















































































7.0Cb gear 1
5.0Cb gear 2
4.0Cb gear 3
3.0Cb gear 4
2.5Cb gear 5
2.0Cb gear 6
1.6Cb gear 7
1.4Cb gear 8
1.2Cb gear 9
Cb gear 10

, (5)

where Cb is a constant.
Write a program that implements the truck model described above. The program should

be able to determine v(t) by integrating Eq. (3) for any downhill slope (specified by α(x)).
Discretize the differential equations using first-order differences, e.g.

v̇ ≈
v(t+∆t)− v(t)

∆t
, (6)

where ∆t is the time step length, which should be smaller than the smallest relevant time
scale in the problem. In this case ∆t should not exceed 0.5 s, and even smaller values may be
better. Next, write a GA that optimizes (the weights of) a feedforward neural network (with
a single hidden layer, with Nh hidden neurons) responsible for handling the braking system.
The network should have three inputs, namely v/vmax, α/αmax (see below), and Tb/Tmax, where
vmax, αmax, and Tmax are constants, and two outputs, namely Pp and ∆gear. ∆gear denotes the
gear choice, i.e. whether to increase or decrease the gear (by a single step, in both cases), or
to leave the gear unchanged. The ∆gear output signal can be encoded in various ways - you
may select any suitable encoding. Note that ∆gear is the desired gear change. However, it is
not possible to change gears several times per second: The number of gear changes should be
limited to one every two seconds (i.e. after changing gears, no further change can be made until
at least two seconds later, regardless of the output from the neural network).

The optimization criterion is that the truck should manage to drive as fast as possible down
a given slope, without ever violating the constraints regarding speed (should not exceed vmax or
fall below vmin) and brake temperature (should not exceed Tmax). If any constraint is violated,
the evaluation (on that particular slope) should be terminated. Thus, a possible fitness measure
for slope i is

Fi = vidi, (7)

where vi is the average speed over the evaluation (before termination), and di is the distance
travelled before termination. Thus, if the truck manages to cover the whole slope, Fi = viL,
where L is the length of the slope (see below). Note that other fitness measures are possible
(and might work better!). You may choose a suitable fitness measure yourself. The complete
fitness measure F for a given network over, say, the training set (see below) can be taken as
either the average F over the slopes in the set or as the worst evaluation, i.e. F = min Fi.

In order to train your network, generate three sets of slopes: A training set (10 slopes) a val-
idation set (5 slopes) and a test set (5 slopes) and store them in a single file GetSlopeAngle.m,
using the format and interface specified in the file

www.me.chalmers.se/~mwahde/courses/soa/2018/GetSlopeAngle.m



Make all slopes L = 1000 m long. α should vary with the horizontal distance x (i.e. it should not
be constant), and should never exceed αmax, see below. Note the the function GetSlopeAngle.m

should give the slope angle in degrees.
Next, train the network, using the method of holdout validation, described in Appendix C.2

in the book, i.e. measure both F tr and F val, use F tr as feedback to the GA and F val to determine
when to stop the training etc.

Set the parameters according to Tmax = 750 (K), M = 20000 (kg), τ = 30 (s), Ch = 40
(K/s), Tamb = 283 (K), Cb = 3000 (N), vmax = 25 (m/s), vmin = 1 (m/s), αmax = 10 (degrees).
Assume that the truck starts at x = 0, with speed 20 m/s and with gear 7 in place. In the
starting position, set Tb = 500 K. You may chose any suitable value (around 3-10, say) for the
number of hidden neurons (Nh).

In your report, plot the results (i.e. the maximum fitness value in the population, as a
function of the number of evaluated generations) obtained on the training and validation
sets. Also, in addition to the optimization program, provide a separate test program (called
TestProgram.m), which allows a user quickly to rerun your best network (i.e. the one with
smallest validation error) on an arbitrary slope. This program should automatically load (or
directly encode) and run your best network (once) on a given slope (e.g. the first slope in the
validation set), without the user having to specify any inputs or otherwise modify the code.
Moreover, when the truck reaches the end of the slope (or violates the constraints so that the
simulation is stopped) this test program should generate a set of (sub-)plots (in one plot win-
dow) showing (i) the slope angle (α), (ii) the brake pedal pressure, (iii) the gear, (iv) the speed,
and (v) the brake temperature, as functions of the horizontal distance travelled (x). Repeat:
Your test program must generate the subplots just described. The plots should be shown once
the truck reaches the end, i.e. not during the run.

Note! Your braking system will be tested on a few test slopes generated as described above,
and your score will be based on the performance of the system on these test slopes. Therefore,
it is essential that you provide the test program, with clear running instructions. It should not
be necessary to rerun the optimization procedure in order to test your best network!

The implementation of the programs (the main program (with the GA) and the test program)
is worth 2p, and the remaining 2p are awarded depending on the performance over the test
slopes.



Problem 2.4, 4p, Function fitting using LGP

Consider a case in which a data series has been generated from a function of the form

g(x) =
a0 + a1x+ a2x

2 + . . .+ apx
p

b0 + b1x+ b2x2 + . . .+ bqxq
. (8)

The values of p and q, as well as the constants ai and bi are unknown, and should be inferred from
the data series using LGP. Start by writing a general LGP program (called LGP24.m), with M
variable registers, N constant registers, and the operator set {+,−,×, /}. The program should
evolve linear chromosomes using tournament selection, two-point crossover (see pp. 76-77 in
the book), and mutations. The structure of the chromosomes should be of the kind illustrated
in Fig. 3.19 in the book, i.e. such that each instruction is defined by four genes. The first gene
(in a given instruction) should encode the operator and the second gene should encode the
destination register. The third and fourth genes should encode the two operands. Note that
crossover should occur between instructions, as shown in Fig. 3.21 in the book. The data set,
consisting of values of the function y = g(x) for various values of x, is contained in the file

www.me.chalmers.se/~mwahde/courses/soa/2018/LoadFunctionData.m

The evaluation of a chromosome should be done as follows: For each data point (xk, yk), place
the value of xk in the first variable register (r1), and set the contents of the other variable
registers to 0. Next, execute the sequence of instructions contained in the chromosome, and
take the final value contained in r1 as the output, i.e. as the estimate ŷk of yk. When all data
points have been considered, form the total error as

e =

√

√

√

√

1

K

K
∑

k=1

(ŷk − yk)
2, (9)

where K is the number of data points. Finally, set the fitness value as f = 1/e. Note that the
data is (unrealistically) noise-free. Thus, there is no risk of overfitting in this problem.

You may use as many variable registers and constant registers as you like (but you only
need a few of each). Note that the values of the constant registers should be set once and for
all, before the evaluation of chromosomes begins.

Run your program, and try to determine the function g(x). In your report, the function
should be specified as in Eq. (8) above (but with numerical values for all constants). Just
providing the best chromosome is not sufficient. Thus, you may wish to write a Matlab function
that takes a chromosome as input and outputs the function g(x) in the form given above. It is
not allowed to use the Symbolic Math Toolbox in your LGP program, but you may use it in
order to simplify your best function. Note that this can also be done via string operations. In
your report, you should also specify how many registers (variable and constant) were used, as
well as the values chosen for the constant registers.

In addition, you must provide a simple test program (TestFit.m), in which the best func-
tion found (by your LGP program) is included in Matlab form, i.e. as a (hard-coded) Matlab
function. This program should plot both the original data and your best fit, and should produce
the error (see above) as text output. (The problem continues on the next page.)



Make sure to send the complete Matlab programs (LGP program and test program, see
above).

Hint: In order to cope with variable-length chromosomes, you may wish to use the struct
concept in Matlab, see e.g. the help files in Matlab (>> help struct etc.) and the simple
example available on the web page.

You may also wish to use some of the more advanced EA operators in this problem, such
as, for example, varying mutation rates. This is of course allowed. You may also introduce a
multiplicative penalty factor (on the fitness values) for chromosomes whose length exceeds a
given maximum mmax. You must determine the value of mmax yourself (but it should not be
below 100, corresponding to 25 instructions).

The implementation of the programs is worth 2p, and the remaining 2p are awarded de-
pending on the quality of the fit. For full points, the error (described above) should be less
than 0.01 (Ideally, of course, you should provide the exact function!). If the error exceeds 0.30,
no points are given for the performance of the program.


