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1 Problem 2.1: The traveling salesman problem (TSP)

1.1 Number of distinct paths for N cities
For N cities, the total number of possible paths is given by

Ptotal = N!

In our case, we only look for distinct paths, we need to remove the paths that are equivalent.

We know that paths that go through a given sequence of cities in opposite order are
equivalent. As there is 2 possible orders for each path, we need to divide Py by 2.

We also know that paths that start in different cities but run through the cities in the
same order are equivalent. Since there are N possible start city, we need to divide P,y by
N.

Finally, the number of distinct path for N cities is given by :
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1.2 GA algorithm for TSP
By running the algorithm in the GA21b.m file, we obtain the following result:

Figure 1: Path obtained with the GA algorithm.

With the following parameters :

populationSize = 2000

numberOfGenerations = 100

mutationProbability = 1/nCities

tournamentSelectionParameter = 0.75

tournamentSize = populationSize

numberOfBestInd Tolnsert = 1+fix(rand*2)

The path found in the figure above has a length of 171.8625, and corresponds to the following
sequence of cities:
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4 —-41 -39 —+31 =221 -24 38 =43 -+ 49 - 50 — 42 — 45 = 36 — 32 — 29 —
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1.3 ACO algorithm for TSP

By running the algorithm in the AntSystem.m file, we obtain the following result:

Figure 2: Path obtained with the ACO algorithm.

With the following parameters :

numberOfAnts = 50

e alpha = 1.0
e beta = 3.0
e tho =0.5

e nearestNeighbourPathLength = GetNearestNeighbourPathLength(cityLocation)
e tau0 = numberOfAnts/nearestNeighbourPathLength
o targetPathLength = 123.0

The path found in the figure above has a length of 122.33278, and corresponds to the
following sequence of cities:
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1.4 NN path algorithm for TSP

By running NNPathLengthCalculator.m, we obtained a path length of 162.2709 starting from
the city 7. Here is the corresponding path plot :

Figure 3: Path obtained with the NN algorithm, starting from city 7.

The length of the path obtained with this algorithm is better than the one obtained
by the GA (162.2709 vs 171.8625). An improved version of the previous GA can thus be
created, by initializing the population using the nearest neighbour algorithm.

This improved GA was is implemented in GA_NNstart21.m and give much better results:

Figure 4: Path obtained with the improved GA algorithm.

The length of the previous path is 126.3693. It can be said that initialization using
the NN algorithms drastically improves the performance of the GA, going from a minimum
distance of 171.8625 to 126.3693.



The path above corresponds to the following city sequence:

50 - 43 -5 42 - 39 - 41 - 45 — 44 — 47 — 46 — 48 — 40 — 36 — 32 — 29 —
30522 —-528—-20217—>16—-14 313 >8—>7T—-3—>6—12 =18 - 21 — 24 —
31 -+34—-+3—->20—+26—-23—-19—-1—->10—-2—-4—>5—-1—>9— 15 = 27T —
35 — 37— 38 =49 — 50

1.5 Best paths found

Here is a summary of the shortest path lengths obtained with the previous algorithms:

basic GA algorithm : 171.8625

e NN algorithm : 162.2709

e improved GA (NN initialization) : 126.3693
e ACO algorithm : 122.33278

The best result is the one obtained with the ACO algorithm. The best path obtained is
saved in BestResultFound.m, and is represented on the following graph:

Figure 5: Best Path found (length = 122.33278), obtained with the ACO algorithm.



2 Problem 2.2: Particle swarm optimization

2.1 Contour plot

By displaying the contour plot of log(0.01 + f(z,y)), we can get a rough idea of the values
of the f minima on [-5, 5].
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According to the contour plot above, we find that the minimas are approximately at the
following coordinates:



2.2 PSO results

Through different runs, the PSO algorithm found 4 minimums that are coherent with the
previous estimations. The following table presents these results:

x y f(x,y)
—2805118 | 3.131313 | 9.6347 x 10 12
3.000000 | 2.000000 | 2.7315 x 10~ 22
—3.779310 | —3.283186 | 3.7979 x 10 12
3584428 | —1.848127 | 1.5320 x 10
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Figure 7: Graphical representations of the minima found

3 Problem 2.4: Particle swarm optimization

Unfortunately, I didn’t have time to do this problem (only the Truck Model is implemented).
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4 Problem 2.4: Particle swarm optimization

The results presented below were obtained by running the LGP24.m program with the
following parameters:

e populationSize = 5000

e numberOfGenerations = 500

e nbOperators = 4

e nbVariablesReg = 3

e constantReg = [ 1]

e nbConstantsReg = size(constantReg, 2)
e cps = 107°

e minChromosomeLength = 15

e maxChromosomeLength = 150

e crossoverProbability = 0.8

e mutationCoefficient = 5

e tournamentSelectionParameter = 0.75
e tournamentSize = 2

o numberOfBestIndTolnsert = 3

4.1 A few words about the parameters

Through various tests, I quickly realized that we had to try to limit the number of registers.
Thus, three variable registers and one constant register were chosen. Limiting the number
of registers reduces the number of possible instructions, and thus allows the program to find
relevant instructions more quickly.

The number of best individuals to insert in each new generation was increased to 3 because
it seemed to improve the results of the algorithm, allowing more relevant instructions to be
kept between each generation.

The mutation probability was changed to a mutation coefficient C' decreasing linearly to
1 during the execution of the program. The probability of mutation is given by % where L
represents the length of the considered chromosome.



4.2 Results

The execution of LGP algorithm outputs a chromosome with a size of 19 instructions, cor-
responding to the function :

((((((z=(0/2))=(0/2))+((x=(0/2)) = (0/2)))+1)/)*(1/((z+1)+(((x—(0/2)) =(0/2))*(z/1)))))

This expression could be obtained using the DisplayChromosomeFunction function. A
more elegant form of this function is as follows:

20 +1
2441

All workspace variables after the run of the algorithm have been saved and can be accessed
by loading the file bestFunctionFound- Workspace.mat in Matlab (Warning ! At the time the
algorithm was run, the eps variable did not exist. It is necessary to define eps = %M ax
to successfully execute the program from this file. Otherwise, the program can be executed
without any problem by running LGP24.m).
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Figure 8: Graph obtained with the TestFit.m program.

The RMS error of this result is 0.26533, with a mean error of 0.22718. More details
numbers can be found in the bestFunctionFound.output file. It would most likely be possible
to obtain even more accurate results by running the algorithm over a larger number of
individuals and generations. However, the execution time of the algorithm being very long,
I didn’t have time to start (and finish) a new run of this program...



