Stochastic optimization algorithms 2018 Home problems, set 2

Cassard Sebastien 19960526-T313
October 18, 2018

1 Problem 2.1: The traveling salesman problem (TSP)

1.1 Number of distinct paths for N cities

For N cities, the total number of possible paths is given by

$$
P_{\text {total }}=N!
$$

In our case, we only look for distinct paths, we need to remove the paths that are equivalent.
We know that paths that go through a given sequence of cities in opposite order are equivalent. As there is 2 possible orders for each path, we need to divide $P_{\text {total }}$ by 2 .

We also know that paths that start in different cities but run through the cities in the same order are equivalent. Since there are N possible start city, we need to divide $P_{\text {total }}$ by N.

Finally, the number of distinct path for N cities is given by :

$$
P_{\text {distinct }}=\frac{P_{\text {total }}}{2 N}=\frac{N!}{2 N}=\frac{(N-1)!}{2}
$$

1.2 GA algorithm for TSP

By running the algorithm in the GA21b.m file, we obtain the following result:

Figure 1: Path obtained with the GA algorithm.

With the following parameters :

- populationSize $=2000$
- numberOfGenerations $=100$
- mutationProbability $=1 /$ nCities
- tournamentSelectionParameter $=0.75$
- tournamentSize $=$ populationSize
- numberOfBestIndToInsert $=1+$ fix $\left(\right.$ rand $\left.{ }^{*} 2\right)$

The path found in the figure above has a length of 171.8625, and corresponds to the following sequence of cities:
$27 \rightarrow 15 \rightarrow 9 \rightarrow 1 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 47 \rightarrow 46 \rightarrow 48 \rightarrow 40 \rightarrow 28 \rightarrow 20 \rightarrow 22 \rightarrow 30 \rightarrow$ $44 \rightarrow 41 \rightarrow 39 \rightarrow 31 \rightarrow 21 \rightarrow 24 \rightarrow 38 \rightarrow 43 \rightarrow 49 \rightarrow 50 \rightarrow 42 \rightarrow 45 \rightarrow 36 \rightarrow 32 \rightarrow 29 \rightarrow$ $26 \rightarrow 25 \rightarrow 18 \rightarrow 19 \rightarrow 16 \rightarrow 12 \rightarrow 11 \rightarrow 10 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 8 \rightarrow 13 \rightarrow 14 \rightarrow 17 \rightarrow 23 \rightarrow$ $33 \rightarrow 34 \rightarrow 37 \rightarrow 35 \rightarrow 27$

1.3 ACO algorithm for TSP

By running the algorithm in the AntSystem.m file, we obtain the following result:

Figure 2: Path obtained with the ACO algorithm.
With the following parameters :

- numberOfAnts $=50$
- alpha $=1.0$
- beta $=3.0$
- $\mathrm{rho}=0.5$
- nearestNeighbourPathLength $=$ GetNearestNeighbourPathLength(cityLocation)
- tau $0=$ numberOfAnts/nearestNeighbourPathLength
- targetPathLength $=123.0$

The path found in the figure above has a length of 122.33278 , and corresponds to the following sequence of cities:
$36 \rightarrow 32 \rightarrow 29 \rightarrow 28 \rightarrow 20 \rightarrow 17 \rightarrow 14 \rightarrow 13 \rightarrow 8 \rightarrow 7 \rightarrow 3 \rightarrow 6 \rightarrow 12 \rightarrow 11 \rightarrow 10 \rightarrow$ $2 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 9 \rightarrow 15 \rightarrow 27 \rightarrow 35 \rightarrow 38 \rightarrow 37 \rightarrow 43 \rightarrow 50 \rightarrow 49 \rightarrow 42 \rightarrow 45 \rightarrow 41 \rightarrow$ $39 \rightarrow 34 \rightarrow 33 \rightarrow 31 \rightarrow 24 \rightarrow 21 \rightarrow 18 \rightarrow 25 \rightarrow 26 \rightarrow 23 \rightarrow 19 \rightarrow 16 \rightarrow 22 \rightarrow 30 \rightarrow 44 \rightarrow$ $47 \rightarrow 46 \rightarrow 48 \rightarrow 40 \rightarrow 36$

1.4 NN path algorithm for TSP

By running NNPathLengthCalculator.m, we obtained a path length of 162.2709 starting from the city 7. Here is the corresponding path plot:

Figure 3: Path obtained with the NN algorithm, starting from city 7.
The length of the path obtained with this algorithm is better than the one obtained by the GA (162.2709 vs 171.8625). An improved version of the previous GA can thus be created, by initializing the population using the nearest neighbour algorithm.

This improved GA was is implemented in GA_NNstart21.m and give much better results:

Figure 4: Path obtained with the improved GA algorithm.
The length of the previous path is 126.3693 . It can be said that initialization using the NN algorithms drastically improves the performance of the GA, going from a minimum distance of 171.8625 to 126.3693 .

The path above corresponds to the following city sequence:
$50 \rightarrow 43 \rightarrow 42 \rightarrow 39 \rightarrow 41 \rightarrow 45 \rightarrow 44 \rightarrow 47 \rightarrow 46 \rightarrow 48 \rightarrow 40 \rightarrow 36 \rightarrow 32 \rightarrow 29 \rightarrow$ $30 \rightarrow 22 \rightarrow 28 \rightarrow 20 \rightarrow 17 \rightarrow 16 \rightarrow 14 \rightarrow 13 \rightarrow 8 \rightarrow 7 \rightarrow 3 \rightarrow 6 \rightarrow 12 \rightarrow 18 \rightarrow 21 \rightarrow 24 \rightarrow$ $31 \rightarrow 34 \rightarrow 33 \rightarrow 25 \rightarrow 26 \rightarrow 23 \rightarrow 19 \rightarrow 11 \rightarrow 10 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 9 \rightarrow 15 \rightarrow 27 \rightarrow$ $35 \rightarrow 37 \rightarrow 38 \rightarrow 49 \rightarrow 50$

1.5 Best paths found

Here is a summary of the shortest path lengths obtained with the previous algorithms:

- basic GA algorithm : 171.8625
- NN algorithm : 162.2709
- improved GA (NN initialization) : 126.3693
- ACO algorithm : 122.33278

The best result is the one obtained with the ACO algorithm. The best path obtained is saved in BestResultFound.m, and is represented on the following graph:

Figure 5: Best Path found (length $=122.33278$), obtained with the ACO algorithm.

2 Problem 2.2: Particle swarm optimization

2.1 Contour plot

By displaying the contour plot of $\log (0.01+f(x, y))$, we can get a rough idea of the values of the f minima on $[-5,5]$.

Figure 6:

According to the contour plot above, we find that the minimas are approximately at the following coordinates:

- $(-3.2,3.1)$
- $(3,2)$
- $(-3.8,-3.2)$
- $(3.6,-1.9)$

2.2 PSO results

Through different runs, the PSO algorithm found 4 minimums that are coherent with the previous estimations. The following table presents these results:

\mathbf{x}	\mathbf{y}	$\mathbf{f}(\mathbf{x}, \mathbf{y})$
-2.805118	3.131313	9.6347×10^{-12}
3.000000	2.000000	2.7315×10^{-22}
-3.779310	-3.283186	3.7979×10^{-12}
3.584428	-1.848127	1.5320×10^{-24}

Figure 7: Graphical representations of the minima found

3 Problem 2.4: Particle swarm optimization

Unfortunately, I didn't have time to do this problem (only the Truck Model is implemented).

4 Problem 2.4: Particle swarm optimization

The results presented below were obtained by running the LGP24.m program with the following parameters:

- populationSize $=5000$
- numberOfGenerations $=500$
- nbOperators $=4$
- nbVariablesReg $=3$
- constantReg $=[1]$
- $n b$ ConstantsReg $=\operatorname{size}($ constantReg, 2$)$
- $\mathrm{eps}=10^{-9}$
- minChromosomeLength $=15$
- maxChromosomeLength $=150$
- crossoverProbability $=0.8$
- mutationCoefficient $=5$
- tournamentSelectionParameter $=0.75$
- tournamentSize $=2$
- numberOfBestIndToInsert $=3$

4.1 A few words about the parameters

Through various tests, I quickly realized that we had to try to limit the number of registers. Thus, three variable registers and one constant register were chosen. Limiting the number of registers reduces the number of possible instructions, and thus allows the program to find relevant instructions more quickly.

The number of best individuals to insert in each new generation was increased to 3 because it seemed to improve the results of the algorithm, allowing more relevant instructions to be kept between each generation.

The mutation probability was changed to a mutation coefficient C decreasing linearly to 1 during the execution of the program. The probability of mutation is given by $\frac{C}{L}$ where L represents the length of the considered chromosome.

4.2 Results

The execution of LGP algorithm outputs a chromosome with a size of 19 instructions, corresponding to the function :
$(((((x-(0 / x))-(0 / x))+((x-(0 / x))-(0 / x)))+1) / 1) *(1 /((x+1)+(((x-(0 / x))-(0 / x)) *(x / 1)))))$
This expression could be obtained using the DisplayChromosomeFunction function. A more elegant form of this function is as follows:

$$
\frac{2 x+1}{x^{2}+x+1}
$$

All workspace variables after the run of the algorithm have been saved and can be accessed by loading the file bestFunctionFound-Workspace.mat in Matlab (Warning! At the time the algorithm was run, the eps variable did not exist. It is necessary to define eps $=\frac{1}{c} M a x$ to successfully execute the program from this file. Otherwise, the program can be executed without any problem by running LGP24.m).

Figure 8: Graph obtained with the TestFit.m program.
The RMS error of this result is 0.26533 , with a mean error of 0.22718 . More details numbers can be found in the bestFunctionFound.output file. It would most likely be possible to obtain even more accurate results by running the algorithm over a larger number of individuals and generations. However, the execution time of the algorithm being very long, I didn't have time to start (and finish) a new run of this program...

